

L1CaloTrigger: Beyond the TDR

Sridhara Dasu Department of Physics University of Wisconsin

Hardware Status

- TDR Approval → Proceeding with design evaluation by building more realistic prototypes (2001)
- Working towards integration of TPG, RCT, GCT (2001-2002)

Beyond the TDR

- HF granularity question
- Ideas for robustness of τ algorithm
- Evaluation of physics channels not covered in the TDR
- New uses of HF information

TDR Results (Rates)

	е	ee	τ	ττ	j	jj	jjj	زززز
$Low\ \mathcal{L}$	24	18	95	75	150	115	95	75
High \mathcal{L}	35	20	180	110	285	225	125	105
	τ e	je	MET	е+мет	j+MET	e(NI)	ee(NI)	ΣΕΤ
	80,14	125,14	275	12,175	65,175	NA*	NA*	1000
High \mathcal{L}	125,20	165,20	350	18,250	95,250	58	28	1500
	μ	μμ	μ e	μτ	μ j	μ+ЕТ	μ +MET	Rate:
$Low\ \mathcal{L}$	10	3	4,12	4,80	4,80	4,600	4,140	25 kHz
High $\mathcal L$	25	8,5	5,32	5,140	5,155	5,800	5,200	25 kHz

Rates at high and low £ for a mock trigger table

- A sample set of thresholds that yield 25 kHz rate
- Final trigger table will be much more involved (TBD)

TDR Results (Physics Efficiencies)

Channel	Low \mathcal{L}	High ${\cal L}$	Triggers Used
H(200) $\rightarrow \tau\tau \rightarrow$ hadrons	93%	60%	e1 , τ1, j1 , e2 , τ 2 , j2
H(500) $\rightarrow \tau\tau \rightarrow$ hadrons	99%	86%	e1, τ1, j1, e2, τ2, j2
H(170) → 4 electrons	100%	99%	e1, e2 Note: e at low \mathcal{L} does
H(110) → 2 photons	99%	98%	e1, e2 not require isolation
H(135) $ o$ $ au au$ $ o$ e, hadron	96%	72%	e1, e2, τ1, j1
H(200) $ o$ $ au au$ $ o$ e, hadron	96%	74%	e1, e2, τ1, j1
H(120) → Invisible (tag jets)	96%	58%	j1, j2, missing ET
$\textbf{H(120)} \rightarrow \textbf{ZZ*} \rightarrow \textbf{e, e, } \mu, \mu$		73%	e1, e2
$ extsf{H(200)} ightarrow extsf{ZZ} ightarrow extsf{e}, extsf{e}, extsf{jets}$		95%	e1, e2, j1, j2
tt o e, X	97%	82%	e1, j1, j2, j3, j4
tt ightarrow e, H+, X1 $ ightarrow e$, $ au$, X2	94%	76%	e1, j1, j2, j3, j4

Efficiencies at high and low 2 with mock trigger table

- Only Higgs physics investigated other channels to be done
- Final trigger table can have more optimized triggers

HF Granularity

Issue: What is the optimal size of HF towers?

- Trigger prefers 3ηx2φ HF readout to trigger tower mapping
- Finer granularity, $2\eta x 2\phi$? TDR simulation results used HF with sums of E rather than E_{τ} for jet and met algo.
 - In reality we expect to use E_T sums

Jim Brooke's results

- Fixed to use E_T sums
- ... show a very slight improvement with finer granularity

ORCA Production

Simulation production problems in Fall 2000

- Did not manage to get W, Z and top results for TDR ORCA at FNAL and Wisconsin
 - Put together our own ORCA production farm
 - 1.2 TB Objy federation and servers at UW-physics
 - 20 nodes commissioned and more on the way
 - Access to 600++ CPU farm from UW-Computer Science Condor flock
 - Some dedicated farm machines
 - Many idle CPUs in student labs ...
 - Control using Condor software that can stop and restart jobs on available resources
 - Adapted ORCA with checkpointing so crashed jobs are restarted from the next event to be processed
 - Collaborate with FNAL and use their JetMET data

S. Dasu, University of Wisconsin 5 June. 2001

New τ Pattern Logic

Old algorithm for τ veto bit

• Count active towers in EM and HD towers ($E_T^{EM}, E_T^{HD} > 2,4$ GeV) separately and require that there be no more than 2 active towers of each type in a 4x4 region

New algorithm for τ veto bit

Motivation

- Reduce susceptibility to noise
- Additional suppression of normal jet background by vetoing on wide E_⊤ spread

Method

- Make 4-bit η -pattern and ϕ -pattern projections of active towers τ E_{τ} deposits should have clustered hits.
- Veto patterns: 0101,0111,1010,1011,1101,1110,1111
- Allowed patterns: 0000,0001,0010,0011,0100,0110,1000,1100

Efficiencies for τ algorithm variants

Old (TDR algorithm)

CountingOld with 50 GeV cut

Counting - ignoring
 τ bit for E_τ>50 GeV

New (Separate)

 Pattern logic on EM and HD towers separately

New (Combined)

 Pattern logic with AND of EM and HD patterns **CMSIM 120 ORCA 440**

Rates (Preliminary look with partial data)

Not all p_T ranges of QCD data available yet

Use as a guide for relative differences in rates

Absolute values are bogus

Charged Higgs (200 GeV) decays to τ

Single τ in decays and multiple jets

Efficiency using only τ trigger: 57%

New τ algorithm used

Efficiency for τ (57%), electron (21%) & jet triggers (41%) Total = 85%

FNAL ORCA4 Results

Standard Model: W decay to e-, X

Single electron threshold (28 GeV) limits efficiency to 47%

- Isolated electron signature used
- Neutrino is too soft to help in trigger
 Improvement possibility
 - Extreme isolation
 - Use global trigger to demand $\Delta\eta$, $\Delta\phi$ separation from jets
 - High E_T jet veto + missing E_T

UW Condor ORCA4 Results

Standard Model: Top decay to e⁻, X

Single electron trigger efficiency: 66%

Additional efficiency from jet triggers: 22%

Total efficiency: 83%

Improvement possibility

Combined electron+ multi-jet trigger

UW Condor ORCA4 Results

Standard Model: Z decay to e+, e-

Single electron trigger efficiency:

• 77%

Double electron trigger efficiency:

72%

Total efficiency:

• 90%

UW Condor ORCA4 Results

qqH (110, 130 GeV) → b b-bar

Signature

- Two central b jets
- Two forward tagging jets in opposite hemispheres

Trigger Candidates

- Multi-jet candidates
 Low luminosity efficiency
 - M_H = 110 GeV
 - 83% (jet, τ); 90% (all)
 - M_H = 130 GeV
 - 84% (jet, τ); 90% (all)

High luminosity efficiency

- 40% however, this case is difficult to analyse offline Improvement to consider
 - Δη between two jets

FNAL ORCA4 Results

Supersymmetry: MSUGRA

Multi-jet trigger efficiency

80%

Soft narrow jets (τ) with lower E_{τ} cuts efficiency

• 68%

Combine to give Total efficiency 90%

FNAL ORCA4 Results

HF Special Uses

RCT Hardware for HF

- Special receiver crate
 - Does not need to do 4x4 sums, electron finding, τ logic etc.
 - A fraction of Receiver card logic
 - Transmits data to cluster crate
 - A fraction of Jet/Summary card logic

Ideas

- Jim Freeman: Use zero energy HF cell count to track instantaneous luminosity
- How do we transfer the data?
 - Each HF trigger tower is composed of 6 HF physical cells
 - 2 HF trigger towers (8 bit E_T) transmitted on each gigabit link
 - Extra data transfer feasible on current gigabit links
 (2x9 bits data + 5 bits EDC + 1 bit BC0)
 - ullet Can use 2x8-bit non-linear $E_{\scriptscriptstyle T}$ and 2x1-bit "zero" data
 - Can use 2x7-bit non-linear E₊ and 4-bit "zero" cell count

Summary

Hardware

- Proceeding according to the plans outlined in the TDR
 Fermilab and Wisconsin ORCA productions
 - Generate and access events on demand.

New τ veto based on pattern search

- More robust against noise
- Works just as well (H⁺ (200 GeV) $\rightarrow \tau \nu$ decay efficiency 85%)
- Rates are to be evaluated

ORCA results for physics channels not simulated with ORCA in the TDR

- Efficiency for inclusive Z(90%), W (48%) and top (83%)
 - Performs as expected with 30 GeV single electron trigger threshold
 - Ideas for improvements being evaluated
 - Extreme isolation for W sample.
 - Make use of jet activity for top sample
- Efficiency for MSUGRA events (90%)
 - Matches previous studies using CMSIM
- Efficiency for q q Higgs (110-130 GeV) → b b (90%)
 - Reasonable at low luminosity
 - Expect improvement using $\Delta \eta$ cuts on tag jets